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ELECI ON MICROSCOPY OF METEORITIC AND

ARTIFICIALLY SHOtAED GRAPHITE*
t'

_,'_ THOMAS P. SCIACCA AND MICHAEL E. LIPSCtlL'TZt

Sample,: of graphite, pertly converted to diamond by shock, and meteoritic graphite were
studied by transmission electron micrmeopy. The eht_ked graphite, remained in the form of

tingle crystals and was mildly deformed while the diamond which had formed was anhedral end

polycrystalline. The meteoritic graphite contained minor amounts of troilite (FeS) and elemental
sulfur but no detectable carbon phase other than graphite.

As an adjunct to an x-ray crystallographicstudy --'._i____=>_ _-_of meteoritid diamonds (1) we have studied the
morphology of the phases present in meteoritic _,_: r- _\
graphite, and in graphite which has been artifi- ._. ,? • _.-_

.. cially shockedat pressureshigh enough (300 kbar) _ :._._ ="- ° ,
to producediamond (_). _._.4_"

Samples of the sta_ing material, high-purity _ _
graphite (8), as well as the resulting shock- _'_. " .'\• • ,e

product, and graphite from the interior of a l.l-g _ : .

graphite nodule from the Canyon Disbio iron ._ _"_ Im._teoritewerecrushedtoI00mesh. Slurriesin

ethanol were _hen placed in an ultrasonic gene- ..
rator for 5 minutes to disperse the sample uni- qt_'.. -,__
formly. The suspenbions were placed on _:,_','
Formvar, collodion, or carbon substrates for .
examination in a Hitachi HU-11 electrc._ micro- ....
scope. Phases were identified by electron diffrac- ':"
tion of selected areas with gold and palladium as _ -_
standards.

Figure la shows a typical graphite-diamond -,_t- "-
intergrowth from the artificiallyshocked graphite. "_
All of the diamonds formed in this manner were
anhedrai and polycrystalline, the graphite
flakes seemed mildly deformed although they
remained single crystals. Figure lb shows s
typical graphite flake from the staring material.

In both the starting material and shockproduct Fmvu l.--(a) Dianumd.,_phite intergrowth in arti.
the only other phase that we found was in the fieiallyshoeke0graphite. Note the anbednd n_r-

phology of tho L"ler diamond grains (D). (b) Typical
_ _ _, 1_ (_J_s):_o4_-tt, _ _, im4. _e from the _p_te _ng mst_. _ _ture

O_ _ _1_ em,_.

_e___ ___.jae_ _,__u_,_a_, sab_ _.n._ of this _e may be eompared_ith that of _ .n-tra_formed graphite in (a).
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_,:-_ -- induced conversion of graphite to diamond ap-

_r_:. - "•_ _ _"_¢_•• parently proceeds by a mechanism other than the
..__ . orderly diffusion and addition of carbon atoms to

diamond nuclei (1, _).
X-ray fluorescence analysis of the interior of

' the Canyon Diablo lodule indicated the presence
, of only iron and sulfur. The only carbon phase

detected was normal graphite. The cubic phase* t

seen in the starting material and shock product

. was not observed in the Canyon Diablo nodule.• The sulfur in the Canyon Diablo material

i__ apparently exists in two forms; as free rhombic...... ' .... sulfur and as troilite (FeS). Figure 3a shows
anhedral single crystals of sulfur in a graphite

FIGURE 2.--Unidentified species present in both starting
malarial and shock product. The cell dimension of these matrix at an electron accelerating voltage of
cubes is similar to that of the "carL_n-II" phase re- 75 kv. At 100 kv, the normal operating voltage
ported by Aust and Drickamer (4.)

form of euhedral cubes (Fig. 2) which were single
crystals of uncertain origin. The cell dimension
of these simple cubic crystals (a0= 5.55/_) corres-

ponds very closeloy to that of the "carbon II" , s
phase (a0= 5.545 A) reported by Aust and Drick-
amer (4,). Inasmuch as the cubes were present
in very small numbers (< < 1 percent) in both the
starting material and product we cannot say that

they were produced by shock or, in fact, that they _ •

were composed of carbon. It seems very unlikely / w

that some extraneous material would possess
exactly the same cell dimension and crystallo-
graphic habit as "carbon II". Yet the cubes'
euhedral appearance, the general perfection of
these crystals, and their low abundance suggest
that they were contaminants and not shock-
formed. It could also be that these cubes were,
indeed, "carbon II" which had grown relatively
slowly during, preparation of the original artificial
graphite block. Unfortunately, all three alterna-
tives (contamination, shock-formation, or slo_,,
growth) seem equally unlikely and it is impossible
to decide among them with the available data.

: The anhedral morphology of the artificial dia-
mond might be expected from the short time

available for crystal growth under the experi-
: mental shock conditions. Shocks generated dur-

ing asteroidal collision (1) on the other hand, no
doubt were of longer duration and might well be FmURE3.--(a) Sulfur (S), graphite mixture from Canyon
expected to result in the formation of subhedral Diablo (75-kv electrons). (b) The same area examined

with 100-kvelectrons. The higher acceleratingvoltage
dial _ond grains. These grains would probably has sufficientlyincreased the temperature to melt the
be polycrysta_ine aggregates, since the shock- sulfurgrain_.
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in these studies, the temperature reached was R_FERENCES AND NOTES

high enough to melt the sulfur (m.p. tl3°C), and 1. M. E. LZPSCHUTZ,Science 143, 1431 (1964).
further aided in its identification (Fig. 3b). The 2. P.S. DzCARLZand J. JAm_.SON,ib/d. 133, 1821 (1961).

troilite in the graphite nodule was identified by 3. National Carbon Company grade AUC high purity
both x-ray and electron diffraction. It was pre- graphite.
sent in amounts greater tha _ about 5 percent 4. R. B. Ausv and H. G. DRZCKAMmZ,Science 140, 817

while the sulfur was presen, in lesser amounts (1963).

(about 2 percent). 5. E. R. DuFRESNE and E. ANVERS,in The Moon,Meteorites and Comets, B. M. MIDDLEHURSTand
The coexistence of troilite and elementui sulfur G.P. KUIPER,Eds. (Univ. of Chicago Press, Chicago,

has been observed previously in Type I carbon- 1963), vol. 4, pp. 496-526.

aceous chondrites (5) although in these meteorites 6. We thank PROF.PAULRAMDOHRfor pointing out this

there is considerably more sulfur than troilite, possibility.

Free sulfur has not previously been reported in 7. This study was carried out, in part, while M. E.LIPSCHUTZwas in the U.S. Army at the Goddard
iron meteorites. It may be that the sulfur was Space Flight Center. We thank P_.vRO E. SAR-
formed by terrestrial weathering of the troilite, m_.N_Oof the Goddard Space Flight Center for his

the iron thus liberated forming amorphous lira- valuable assistance, and P. S. DECARL!(Stanford
onite (6). An alternative is that these minerals Research Institute) and E. P. H_.NVERSO_(U.S.

National Museum) for providing samples. One of
are preterrestrial. If this was the case it i_ us (M.E.L.) thanks the National Science Foundation
expected that the Sas/S u ratios in the troilit .__d for a postdoctoral fellowship at Bern, and the
sulf, zr may differ. Schweizerisehen Nationalsfonds.
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A.C. CONDUCTIVITY OF A PLASMA*
C. S. SHEN_ AND R. L. W. CHEN_;

This paper computes the electricalconductivity of a fully ionized, spatially homogeneous

plasmaunder the influenceof ,' uniform,periodically alternating electric field. The velocity
" distribution of the electrons is determined by solving the linearized Fokker-Planck equations.

All the termsin the collisionintegral are ret,'dned, including those representing electron-electron
interactions. The resultant values of conductivity is expected to be valid in the range of fie-
quencies fromzeroto below the plasmafrequency.

I. INTRODUCTION They computed the a.c. conductivity using a
The purpose of this paper is to calculate the a.c. variational technique. Our results obtained by

conductivity of a spatially homogeneous plasma direct integration of the Fokker-Planck equation
• using the Fokker-Planck equation. The d.c. will be compared to theirs in Section 4.

conductivity of a plasma has been calculated in We begin with the Boltzman equation:
the well-known works of COHENet al. (1950) and
SPITZERJr. and HXRM (1953). Their results are Of,_ Of_ F Of_ / _f_\
in good agreement with the later experimental -_-tv._-=m.-_-t_-_] _ (I)
works of LIN et al. (1955). BERNSTEIN and
TREHAN compute the a.c. conductivity assuming where f, is the distribution function of particles

a Lorentz gas model (1960). The a.c. conduc- of type i,(_f'_
tivity of a real gas should approach that of a Lor- \ $t/¢ is the change of f, produced by
entz gas at high frequencies (see detailed discus- collisions.

sions in Section 4). Toward lower frequencies Equation (1) is deduced from Liouvilm theo-
their departure is expected to increase so that their

rem to describe a many-particle system under two
: ratio becomes nearly 2 in the d.c. limit, in accord- assumptions:

ance with COHENet al. and SPITZERand HXRM. (i) That the characteristic dimensions of the
The recent works on a.c. conductivity by DAWSON inhomogeneities are much larger than the average

' and OBIi]RMAN(1962) consider the time variation impact parameter for the particles participating
of the two-particle distribution, which is neces- in the collision.

sary when dealing with a.c. currents of ultra-high (ii) That the characteris.tic time variation of the
frequencies. However, the domain of applica- process is much longer than the duration of an

! bility of their work is limited to frequencies much average collision, or in other words, a collision is
• higher than the collision frequency. Thus, a com_)leted and the correlation function is 'relaxed'

more precise calculation for the low and inter- before the distribution function itself makes any
mediate range of _ appears desirable and we pro- appreciable change.
ceed to do this in accordance ¢dth methods to be It should be noted here that the term 'duration
described in the next section. After completion of collision' is different from the so-called 'collisia,

of most of the numerical work, a paper by ROmN- time'; collision time is the time between two eolli-
SONand B_.RNSTmN(1962) came to our attention, sions. For particles interacting through long-

*Publishedin Plasma Physics (Journal o[ Nuclear Energy Part C), range forces, this time may be regarded as the time
s:3m-a99.1984. in which deflexions gradually deflected the con-

'tNational Academy o_ Seienoeo--National Research Council Re-
sureh Associate with NASA and Research Fellow of Institute of sidered particle by 90°. Duration of collisimi is

Phyaiea,AcademiaSinica,The RepublicofChina. the time duringwhich:m interactiontakesplace.
tNational Ac_lemy of Sciencee--National Research Council Re-

.arch AssociatewithNASA. In a plasma it is of the c:der o-t. In Fig. 1 a
1329
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!

0-- dv%(v')Iv- v'l (4)
and

o _o_I wp 4_rz_e4. mtmjvth_D
I

_- Region two w--* r_ =--_-_ In2(m_+mj)e2. (5)

FIGUREl.--The rangesof validity computeda.c. condue- The a,lmmation in h_and g sums over all species,
tivities. The values of s.c. conductivity obtained in

this paper is valid in region one. When omega exceeds m_ is the mass of the i-th species, e is the electronic

coo--regiontwo---the values calculated by Dawson charge, XD= ( KT ¥ is the Debye length, and
and Oberman begin to be valid. Here coc is the colli- _,4_-ne2]

sion frequency, up is the plasma frequency. Vth is the relative thermal velocity.

In this paper we consider only plasma with
time-scale diagram is drawn, and the validity of singly-charged ions. The extension of the present
our calculation and those of DAWSONand OBER- method to those with multiply-charged ions is
MANare indicated, straightforward.

The explicit expression of f_f_ depends on
kt/o 2. DERIVATION OF EQUATIONS

the nature of the interaction force. In a fully AND FORMULAE

ionized plasma, the particles interact through the If the distribution function / has an azimuthal
long-range Coulomb forces. The cumulative symmetry about a certain axis, then, following
effect of 'weak' deflexions resulting from the rela- ROSENBLUTH et al., the collision te-m may be
tively distant collisions outT.:ighs the effect of
occasional large deflexions due to relatively close written down explicitly in spherical polar co-
collisions, so one may neglect the contribution by ordinates in velocity space:

th°se very cl°se enc°unters (C°HEN et al')--en- (_)128_ I _Oh_]counters which result in deflexions of 90° or larger. _ffir_ - v- I" _Oh_'l __0
Also,theeffectofdistantparticleslyingout,side

the Debye length _,Dmay be neglected becau_e of +(2v,)-___2[f ,0_]the shielding of inner particles. Thus, in the _v

computations of \_t/_($-'f_-_' it is only necessa_T to +2(v)2-l_O_[f_{v-_(l_/_ )0_-__og'_consider the collisions with impact distance inter-

e' • _, ,OR _, ,_Og_]
mediate between Xv and b0, w__ereb0=_ is the +v (1-_)_v-v _(1-v/_-_# ]J
impact parameter yielding a 90° deflexion. The

effects of these collisions are cumulative, and the +_-_0_ _(1-u_) -v-xtotal deflexion produced in an interval of time is

similar to that of the Brownian motion; hence, ,_,off _ , ,_o,g ,,o_
one may expand ($f_ in powers of [hv], where +(2v ) _L'(' -v- (1-, _-_-,_

[Av]is the average velocity change due to collisions }] If,{(CoH_._ et al., CHANURXS_KHAR,1943). This +2m," _ +(2v ) _ v #(1-# )_-_i_

procedure leads to the following Fokker-Planck 0 '
collision integral (ROSENBLUTHet al., 1957): +2Ud_z_+2v__(l_ _) O'g._ 2u__0_g_]_(6)

ou o#ou o#! j!

o,k.ov/ 2o,ov:ovov/( where.fficos0isthedirectioncosinetwen
and E. Equation (6) is an exact ,_xpression of the

where _ ,_e Fokker-Planck equation in spherical co-ordinates
h_ffi_.rn_-_m_ldv'f_(v')lv--v'l-z (3) for a distribution function with azimuthal

-- "_J_ symmetry.
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_ We assume that the system is subject to a weak
f '_ electric field E0e_'t whose direction lies along _(x) = e-Udy (15)

._ z-axis. Then following CHAPMANand COWLING 0
': (1939) and SPITZERJr. we expand f_ in a power H(x) =¢(X)-XCI"(x) (16)

series of E:
n -- $

f,(v, t) _f,¢°_(v) +Eof," (v, t) +E0'/,¢_'(v, t) +... (7) I,(x) = fY D(y)e _ dy (17)
0

co

where f¢o>(v) is a time-independent Maxwellian I0(o)--f "D(y)e- dy (18)
distribution and fC'(v, t), fc_)(v, t), ..... are the o
perturbed part due to applied electric field. When with

a steady state has been reached and no transient a_ -EoKT/_e3n In _, X=X_/bo
current exists, the time-dependent part of f c_
(v,t) must be proportional to e _'. Since the ]f2KT_ _/2 4"v/2XoJ _

l\---m-/average energy imparted to the electrons between x - v B-- _p In _ _c

encounters is small compared with their kinetic where _, is _pproximately the 90° deflexion time
energy, the velocity-dependent part of f_¢_(v, t) of a particle with thermal velocity. When _--0,
can be written as e-Cm,"/2_'_D,¢_(v)_. Therefore, equation (10)* reduces to equation (8) of SPITZER
we have Jr. which considers d.c. electric conductivity.

3/2 2

f_{_)(V, t)= m _-m_ /2/_rr_U)/ _ __t In a d.c. electric field, the electrons are not
(2_)_/2e _, _v_e . (8) accelerated in a steady state. Hence, the inertia

3,r_
Combining equations (1), (6) and (7) keeping force term is zero and I0( _ ) = -_a.only terms linear in E0, we obtain

0(_) /_f_)'x 3. SOLUTION OF EQUATIONI_ -- _ _t_ _,{o)

-t-_-e, _0_-J, =\-_-I )_ (9) Equation (10) is a linear integral-d_rlerential
equation whose unknown D(x) is a complex func-

where ($fd$'O_,"' is the linearised Fokker-Planck tion of a real variable. The present section will
collision integral, discuss the mcthod of its solution. As will be

Since the ions' contribution to electric current evident in what follows, the procedure for
is negligible compared t_ electrons, we will con- numerical integration is far from straightforward.
sider only electron distributions and drop the On the one hand, we encounter the problem of
subscript i in the distribution function hereafter, the instability of the solution at small and at

Substituting equation (8) into equation (9) !urge x. Because of the existence of singularities
we find, after some algebraic manipulations, the in _quation (10) at x=0 and at x= _, a slight
following second-order linear integral-differential deviation of D(×) at either small or large x, tends
equation: to be built up quite rapidly. In order to obt,_.in

a physically acceptable solution, it is requiredD"(x) +P(x)D'(x) +Q(x)D(x) = R(x) +S(x) (10)
that D(x) does not a'_nro_ch i_,finity too fast, lead-

where ing to infinite conductivities. The starting value

2xS¢'(x) (11) of D at small x can be obtained by means of aP(x) ffi-2x- -_ H(x) series solution. Because of the instability, we
cannot proceed tb integrate in a step-wise manner.

-iBxS+2(l+_=2X_ ') 1 To overcome this difficulty, we adopted a scheme
Q(x) = H(x) _-_ (12)

, *Note t_mt I_(_) ia _tiaily the total ehangv of momentum of

2dx' 8(2"4xe-2x'). t elvett'ous arkin_ from eleetronion intemetious. Since the mutual

R(_)-_- /_(X) _ g0( co ) (l_) electronic interaetion e_nnot change the total momentum of theeleetrolm, It(*.), by Newton's second law, must equal the total fore_
exerted on the electrons by the applied field minus the iaertla foree of

16 eleetrona. Thhn relation ilives us:

$(X) = 3t_H(x) {xI,(x) - 1.2xl+(x)

-x'lo(x)(1-1"2X*)} (14) I0(®" 3_t iB.,,

i
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used by COHEN et al. We shall refer to their It may be remarked here that the a.c. conduc-
paper for full details, tivity depends on three factors:

On the other hand, we note that I0(_) is no (i) The inertia of the conducting electrons.
longer a known quantity as it is in the case oi d.c. (ii) The mutual interaction among electrons
conductivity; it depends on the solution D(x) and ions.
itself. We proceed as follows: Since we w_mt (iii) The mutual interaction among electrons
conductivities at different frequencies, it is neces- themselves.
sary to obtain solutions for different values of the The mutual electronic interactions have no

parameter B. We begin with a small value direct effect on conductivity since the total change
Bffi0.05. Using an I0(_) taken from the d.c. of momertum due tc such interactions is zero.
case, i.e. I0(_)=0.655, we obtain a solution to Nevertheless, they alter the distribution of elec-
equation (10) from which we get a new I0(_). trons and thereby modify the effect which elec-
Next, we pass on to B = 0.1 using the I0(_) ob- tron-ion collisions and electron inertia have in
tained for the previous B. In this way, we pro- impeding the current. When _ is small, the con-
ceed to ever-increasing values of B, until the initial ductivity is primarily determined by collisions.
adopted I0(_) and the final calculated I0(,o) The inclusion of electron-electron interactions

differ by no more thv,n 2 percent. This occurs at reduces the conductivity by a factor of approxi-
B=1-37. From this point on, we resort to a mutely two. As w increases and becomes of
method ff systematic trials. The initial and order oJ_,this effect becomes less and less impor-
final Io(o_) for all values of B agrec to within 2 tant because there is then insufficient time in each
percent, which is considered sufficiently accurate s.c. cycle to allow _ :, effective modification of the
for the present purposes. , ;tribution by electron-electron interactions.

When oJ well exceeds o_, we may neglect this
4. RESULTSAND DISCUSSION effect and D(x) reduces to

The current is given by D_(x) = x' 425)

J----efdwf,[(v,t)fAEoe"qa(®) (19) l+_-x'

where and the corresponding conductivity becomes

1,4_ ) ffi;xSD(x)e-Xdx _ ,
0

-,(x)=aI x (26)
A =2 (2KT)t/_ (20) j._,n ,3 _-"/_mt/_eqn1" o x -r"_-X

Since J--_E, we have the complex conductivity which is just the a.c. conductivity of a Lorentz
crffiA/s(_), (21) gas (BERNSTEIN and TREHAN).

the im ance ._
1 c

a"n 0 c Condoct+v,t?of o Rtol Got

®), (22) ",, ..... .° 0,..0,..,,°.,
the resistance " - - - _"°°'c..,,,.,_ ,. ,_.++,_,+..., _,.,,

1 Rels(_) cRels(®) a- ",

R=_- 118(_)], ffi 1is(®)l,, 423) --..._,,,,

and the reac'_ance """ ._ .

1 lmls(_)=clmls(®) "" "-_
]7T 5[ 424) ..........

with
I -- l I i +

1 3 ! _a/, tilt o o,,_ ', ,s 2 +.s s ./.,
c=_-ffi_ (2KT)+/2, m _ In X. F+,ovmm2.--A. C. conductivities.
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T i i _ , '" i' ,

' R®;, ,,.I J....... TABLE 1.--ValuesofD(x)foro_=.',ando_ffiOo_,ffi (°pln----_h4v/_x
AA "_

I

OJ I t.0¢ OJI0

o8 ..... ...... Re[D(x) l lm[D(x)] D(x)

or __

_ . _ 0. 10 .... i 0. 0055887 -0. 01)02029 0.0008093
-- R.o_ R.,.,,.,,y,f * Ro,I_, _ O. 11 .... I O.0009252 --0. 0003438 O. 001300

05 [ / RL*_ R........,y., * Lo,..,z _*, 4 O. 12._ ! O. 001376 --0. 000542 O. 001970/ ----f R.,-,,3, __........,, ,. ,_*_Q,F,,q_,n.L,,.,' O. 13 .... O. 001956 --0. 0008068 O.002847

O_I .............. -.._-_ _. O. 14 .... ! 0.00268 --0.001149 0.003955
, z _ * 5 s r s 9 ,o ./_ 0.15 .... ! 0.00356 --0.03158 0.055317

FIGUaE 3._A. C. resistivities 0. 16 .... I 0.004_1 -0.00210 0.006955
0. 17 .... 0. 00583 -0.00272 0. 008886
0. 18 .... 0.00724 -0.00346 0.01113

x_ _r ........ O.19 .... 0.00884 --0.00431 0.01370

._ 0.20 .... 0. 01063 --0. 00528 0.01660

0.22 .... 0. 01483 --0.00761 0. 02347
7 0.24 .... 0. 01985 -0. 01048 0.03180

6 0. 26 .... 0. 0257 --0.0139 0.04165
0.28 .... 0.0324 --0. 0180 0.05304

5 0.30 .... 0.0400 --0.0"226 0.06601
_'• 0. 32 .... 0. 0483 --0.0279 0. 08057

4 •Y/_ 0.34 .... 0.0575 - 0. 0339 0.09672
//Y 0.36 .... 0.0675 --0.0405 0. 1145

-._" 0.38 .... O.0783 --0. 0478 O. 1338
2 '*._* of * _*., G,, -, 0.40 .... 0.0899 --0.0557 O. 1548

./.z_ ...... x_ *_ R**ct,_, ot _ t.or,.tz o*, ] O. 44 .... O. 1153 --0. 07366 O.2015

I / i i'°¢Re°ctl nee In the High Freq''ency Limit _j 0.48 .... 0.1435 --0.09436 0.2545' , , i t O.52 .... O.1744 --0. 1179 O.3137
o I z 3 4 _ s 7 _ 9 Io _/% 0.56.. _ 0. 2080 --0. 1442 0.3792

0. 60... 0. 2439 --0. 1734 0. 4508
FtGUaE 4._A. C. resctances 0.64. _. 0. 2882 -0. 2055 0. 5285

0.68_. _ 0. 3227 -0.9,405 0. 6123
If we further increaseco,the inertia of electrons 0. 72 . _ 0.3652 -0. 2785 0.7023

become dominant. Then we may treat collision 0.76 .... 0. 4096 -0. 3196 0. 7983

effect as a perturbation and obtain o. 80 .... 0.4559 -0.3637 0.9005
0.88 .... 0. 5535 --0. 4813 1.12_

.[.____._3xm.,2_1 0.96.... 0.6570 --0.5718 1.371

o'®=_k-- 4 .*_) _ (27) 1.04 .... 0.7656 -0.6957 1.645

1 _4ff B_(8 -F3rmiB) (28) 1.12 .... 0. 8782 --0. 8335 1.945
Z_ 1.20 .... 0.9937 --0. 9858 2.273
-'=A 64 1.28 ..... 1.111 -1.1531 2.630

132/'1__ 9-"_-])64_ (29) 1.36.... _.2200 -1.3350 _.0171.44 .... 1. 3457 - 1. 5347 3. 435
_ = ,4 1.52 .... 1.4598 -- 1. 7500 3. 887

-71 m(B _64) (30) 1.so .... 1.5693 -1.9820 4.375
X®= 12f _ 1- w'o- "/ 1.76 .... 1.7657 -2.4962 5.465

1.92 .... 1.1915 -3.0739 6.728
In Table 1 the values of D(x) for Bffil are 2.o8.... 1.9973 -3.7049 8,190

given and compared with the corresponding 2.24.... ! 1.9913 -4.3694 9.880
values for the d.c. case obtained by S_'ngsa Jr. 2.40.... 1.8852 -5.0382 11.83
and HXRM. 2.72 .... 1.4266 -6.2_7 16.62

2. 88 .... 1.2198 -6.6809 19.5R
In Table 2 the resistance, the reactance and _he 3.04.... 1.3105 -6.8066 22,74

absolute value of conductivity are given for vail- 3. 20 .... 2. 1113 -5.675g 26. 00

ous B from 0 to 10. For B> 10, one may use

i
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TAsLm 2.--The condudi_ty, the resistance and the reactance of a.c. current

•IA R/c XIc
_/_

Real gas Lorentz gas Real gas Lornetz gas Real gas Lorentz gas

0.0__. 1.734 3.0 0.577 0.333 0.0 0.0
0. 05_ . 1.729 2. 880 0. 577 0. 340 0. 045 0. 70
0. 1__ 1.713 2. 653 0. 577 0. 354 0. 089 0. 130
0. 15_ 1.687 2. 430 0. 578 0. 367 0. 134 0. 135
0.2_. 1. 651 2. 233 0. 579 0. 380 0. 178 0. 236
0. 25. 1.608 2. 061 0. 58f" 0. 393 0. 223 0. 285
0. 3_ , 1.561 i. 913 0. 582 0. 404 0. 267 0. 332
0.35, 1.510 1.734 0.584 0.415 0.311 0.377
0. 4_, 1.458 1.671 0. 587 0. 425 0. 354 0. 421
0.45. 1. 406 1.572 0. 590 0. 434 0. 397 0. 465
0. 5.. 1.354 1.483 0. 593 0. 443 0. 440 0. 508
0. 55. 1.303 1.405 0. 597 0. 452 0. 482 0. 550
0. 6... 1.255 1. 334 0. 600 0. 460 0. 525 0. 592
0.65. _ 1.208 1.270 0. 603 0. 467 0. 567 0__34
0. 7... 1.164 1.212 0. 607 0.475 0. 608 0. 675
0. 7_.. 1.122 1. 159 0. 610 0. 482 0. 650 0. 716
0.8___ 1.082 1. I1i 0.614 0.488 0.691 0.7'56
0. 8_.. 1.045 1.066 0. 617 0.495 0. 732 0. 797
0. 9.. 1.009 1.025 0. 620 0. 501 0. 773 0. 807

0. 95, _ 0. 976 0. 987 0. 624 0. 507 0. 813 0. 877 '.
1.0.. - 0. 944 0. 952 0. 627 0. 513 0. 853 0. 916
1.1... 0. 886 0. 889 0. 634 0. 524 0. 934 0. 996
1.2... 0.834 0.835 0.640 0.534 1.013 1.074
t. 3_. _ 0. 786 0. 785 0. 645 0. 544 1. 094 1. 159
1.4.. 0. 743 0. 741 0. 750 0. 553 1. 172 1. 230
1.5._ 0. 721 0. 702 0. 657 0. 561 1. 222 1.308
2. 0_. 0. 560 0. 557 0. 672 0.599 1. 588 1.693
3.0.. 0. 408 0. 398 0. 711 0. 655 2. 335 2. 453
4.0.. 0.313 0.305 0.734 0.696 3.086 3.207
5. 0.. 0. 2,55 0. 248 0. 766 0.728 3. 842 3. 960 '
6. 0.. 0. 214 0. 211 0. 784 0. 754 4. 601 4. 710

7.0---I 0.183 0.182 0.790 0.776 5+380 5.460 _:

8. 0.. "I 0. 162 0. 161 0. 796 0. 794 6. 08 6. 21

9.0.. 0. 144 0. 143 0. 814 0. 810 6. 69 6. 81
10.0... 0. 130 0. 129 0.830 0.824 7.51 7.6

equation (26)to compulv them. The error will that transport coefficients obtained from tl_e
be within 2 percent. For B>50" the collisions Fokker-Planck equation should p_ss an ex-
become unimportant and equations (27)-(30) will tremal nature, and proceed to ca|c'_late conduc-
give the correct values to within 2 percent. How- tivities using the variational tec'mique. _'he_r
ever, there the validity of the Fokker-Planek Table 6 gives conduct_vities for variousvalu_ ot
equation alre_ly becomes questionable and one the logarithm of _/_+ including very large values
should use DAWSO_-OBmRMAS'Svalues instead of co,. In our Table 3 only those values are in-

of ours. cluded for comparison which fall within the range _+
In Table 3, the complex conductivity calculated of validity of the Fokker-Planck equation. The

in this paper are compared with those obtained discrepancy b,..tween the two results are generally +

by RomNso_ and Bmm_sTmt_r. They showed within 5 percent.

1966028656-1397



,SB

GENERAL 1335

_ABLE &--Comparison of the s.c. conductivities obtained in this paper (direct integration)
Y

"., with those obtained bp Berstein and Robinson (variational calculation)

Re_/A -Imc/A
_/,o_ Log X

(X-4%/2_/wJ BERNSTI_IN BEBNSTEIN-
ROBINSON SHEN-CHEN ROBINSON SHEN--CHIgN

D.0............ -- co 1.734 1.734 0.000 0.000
0.0057 ......... --3. 0 1. 734 1. 734 0. 004 0. 002
0.0179 ......... --2. 5 1. 730 1. 732 0.649 0. 408
0.0565 ......... --2.0 1.705 1.722 0. 154 0. 151
0. 179.......... -- 1.5 1. 605 1. 608 0. 447 0. 443
0.565 .......... --1.0 0.992 0.987 0.816 0. 813
0. 901.......... --0.8 0. 637 0. 632 0. 786 0. 787
1. 425.......... --0. 6 0. 357 0. 353 0. 545 0. 649
2. 261.......... --0. 4 0. 183 0. 179 0. 477 0. 482
3. 559.......... --0. 2 0. 087 0.084 0. 329 0. 336

I
5._ ........... 0. b 0,040 0. 0_8 0._01 0.204

I

We should add that our results can be readily CaArMAN:S. and COWLING,T. G. (1939) The Mollwmati-

applied to the -_ase of conductivity in the presence cal Theory of Non-Uniform Gttses,Cambridge University

of a unifocm magnetic field. The addition of the Press, London.
COHEN,R., SelTZr.R,L. Jn., and ROUTLV,P. (19b0) Phys."_ magnetic field leads to equations which are en- Re_. 80, 230.

_ tirely s;milar to (10). If the electric field is
?_ COWLING, T. G. Proc. Roy. 8o¢. (1945) AIS& 453.

_ parallel to the magnetic field, the conductivity is DAWSON,J. and OSr.SMAN,C. P_Z/s.Fluids 5, 517.

_! not affected. If it is perpendicular to the mag- Lls, S., RzsL_a, E. L., and KANTaOWI_,, A. (1955)
netic field, the conductivity becomes ¢,(_).ffi¢ J. App/. Phys. 26, 95.

(_q-,_), where ¢ is the function obtained in this OBZr.MAN,C., RON, A., and Dawson, J. (1962) Phys.
i paper and ,0u-ell�me. Flu_l, 5, 1514.

ROlmINSON,B. and BERNS/r_tN,I. B. (1962) Ann. Phys. 18,
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PARTIAL WAVE THEORY OF DIATOMIC MOLECULES,
II*

_ Themethodofexpandingthewavefunctionofdistomicmoleeuiesina seriesof orbitalangular
momentumcigcnfunctions(partialwaves) i_ extendedto two-eiectronhomonuclearmolecules.
The angularmomentumis a functionof the Euleranglesonly;a symmetrice! _iceof these angles
is used whichgreatlyfacilitatesthe descriptionof the :xchangecharacterof the wave function.
As a result,explicitequationsfor the 3 dimension._i"r_iial" functionscan be derivedforall the
differentmagneticparity, and exchangestates. For r_states t.io partialwave sums only go
over alternatev_luesof the angular momentumgiving rise to the expectationof an even more
rapidlyconvergentseriesin the_ecases.

I. INTRODUCTION Euler angles, which Holmberg s has provided, and

In a previous paper _as well as others, 2 the idea has therefore only just been carried out 7.
of expanding the wave function of a (homonu- In section II, we very briefly review the main
clear) d_atomic molecule in a series of angular results of that investigation and present some
momentum eigenfunctions was introduced for Lhe additional transformation properties of tne Eu;er
purpose of affording a very natural method of angles and vector spherical harmonics which bee,.
successive approximations in these problems, on the present application. In section III we

Previous calculations t t using this idea have describe the construction of the molecular wave
almost exclusively been confined to the oue-elec- functions, and in section IV we derive the radial
tron molecule Hg+. In that ca_, the formalism equations. These equations couple states of dif-
is rather easily constructed, and the results are in ferent angular momentum through the potential
tke nature of a check as the problem is amenable energy, but the kinetic energy acts in the same
to exact calculation, t The comparison with the way as in the atomic case. The new feature is,

exact remfl_s is nevertheless most encour_';ing, t therefore, only the coupling terms of ,'he molecu-
The main immediate goal of this _pproach is lar potential and this in turn depends on integrals

two-electron molecules for which there is no over thr_ vector spherical harmonics. The heart
analytically exact solution. As a prerequisite for of section III is the resulting formula, for these
effecting this approach, however, it is necessary integrals and t.hcselection rules for its non-vanish-
that two electron atoms be completely understood, ing. This latter consideration leads to the
Although the general approach to the two- decoupling of the _: states accordirg to even (+)
electron atomic problem is quite old', only r_-_ults or odd (-)l. This decoupling is not present for
for specific anj,mlar momentum states have until other m _tates corresponding to the absence of the
recentlyb:endcrived.The difficultylayinthe + quantum numbersinthoseeases;tausthe Z
descriptionofthecharacterofthewave function statesprov!dep_rticularlyfavorablec_es forthe

undertheexchangeofelectroncoordinateswhich rapidconvergenceofthepartialwave expansica.
becomes very complicated_ with the original SectionV presentsthe zeroth-orderequation
choiceofEulerangless. The explicitlycomplete
solution has required a symmetrical choice of for the :_,_"states and discusses a specific calcula-

tion which can be misted to the accuracy of thin

"Publid_l. O_d.rd S_c# ¥//0_ C¢_¢r _ XdY40-@4-@@. approximation and which by inference beam upon
_,_ t_.s. the convcrgenc_ propertie_ _¢ the entire sequence

tGoddsrd Spe.ee Fli/h$ Center; Natimufl 8¢iem Fouw_tlon. Ns-

_ m_s_h Co_.._ _h _m_-t.. of approxir._tions which thi_ paper projects.
1336
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I!. THEEULERANGLES AND The Euler angles are 9bviously: 0= angle between
TRANSFORMATION PROPERTIES t_and E.';el,ffiangle between i and i'; _I,: angle be-

The Schrfidinger equation of a two-electron tween i' and (t_-t_). Trigonometric relations
homonuclear molecule whose nuclei are _oa- between these angles and the particles spherical

_< sidered fixed (Born-Oppenheimer spproximatJon) angles have been worked out in reference 7; the
will deperd on the two vectors of the electrons rz reader is encouraged to familiari_, himself with
and r2which c,n be measured _iativetotm origin that discuss.;on, although we sha!t attempt to
defined m+ti_e midpoint _tween the nuclei and make this heatment, reasonably self-contained,

"_ parametrically o:l the internuclear sep_xation l_.,._. Specifically, we shall repeat he-, _ the relation ofI
m In place of the six coordinates r_, r_one can in- the z, y and z components of E_and h to the Euler

troduce the three Euler angles and three residual angles in order that the transform ' .m _,roperties
v._riables; the Euler angles describe the orients- given below can readity be checked.

_ ticn of the plane containing the two unit vectors t_ _ ffisin 0_ cos _o_fficos q, sin (_- _0_)
i and ts relative to a space-fixed coordinate system rt

(who_._z-axis is by definition the internuciear axis). +cos 0 sir, 4, cos (_-_0_) (2.5)
"the particular Eu'_r angles we use where intrc-

duced bv Holmberg 6 and have the advantage of _ffisin Oz sin _o_ffisinq, sin (q/-_0_=)• r2
being symmetrically disposed with respect to the -cos 0 cos 4, cos (_-_0_2) (2.6)

7.1
--fficos 01= -sin e cos (,_- _0_ (27)rl

The formulae for analogous components of P_may

_._ be obtained from th, above t-y letting O,r,-0_=.

2--_-_@t_ The an_l._ 0_=i_ the angle botween P_and P_. It is
-_ no_ one of the Euler angles, but rati;_r one choice

of residual coordinate, tt : :,ther two usually being
chosen as the two distances r_and r..,. The resid-
us! coordinates are often call,,d t,eneral.;_d radial

coor, tin_tes; an alternate choice "s r_, ,, rm the
I_tter being the inte-ele_.zron dist'm_.e.

The distinguishing feature of the Laler angles
as opposed to r_idual coordinates is the fact tha_

the angular momentum depends only on the Euler

Ftovu l.--Pertpective drawingof (Holmberg't) Euler angles, hz this connection, it is _e!l known tht, t
angles and the unit vectors of the problem, square of the total orbit,l angular momentum,

M=, can be conserved in atows but not in diatomic

two-electron. Figure 1 contains a diagrammatic _oleeules, whereas the z-component of the angular
;_presentation of these angles and the unit vectors momentum, M,, is a p,_sible constant of the

6.with which we shall be concerned, motion in both cases. A cen,..l role in the atomic
The axes are defired by problem is therefore played by the eigenfunctions

i'- (_×_)/sin 0n (2.1) of the total angular mor,_m,'um D_.+(O,@,_):

i' - 0 (2.2) _ ,+,,,d..,
_'mlVXi' (2.3) z)_(O, 4_,_),_ 4r (0) (2.8)

where

d?_(OJ- (- 1)i,_-. _+_-._ 4r
_/2(2t+1i N''_

sin_-'(_) eoe' -/+_-1, t-;-_,l + Ik--m,, 3in' _) (,'.9)

i
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_= Ik+ml + Ik-,nl +2 (2.10)
and

1 r(2_+l) (l+½1kTmIT_lk-ml)! (l-½1kTml+_lk--ml)!'] i
N,,_=(ik--m_iL' _-_fr_ (?_½1k+ml._½1k_rnl)! X (l+½1k+ml-:-i---ik-Zm_-_.j _2.11)

The eigenfunction character of these f.,nctions In the case of diatomic molecules the invariance

is then given by against rotations, except those around the z-axis,
is lost. Thus according to the above arguments

IVPD_'t-- _21(l+l)D_'._ (2.12) only the rotation quantum number m survives.

M,D_'._= hmD_t ._ _. f3_ The _ of _ partial w6¢_ theory, riga, i_ _o
expand the molecular wave function in terms of

where the explicit form of M= and NL has been the orbital angular momentum:
derived in reference 7 and in any case is known a.

In the atomic problem if we are describing a state g_" _-_ tier,
of definite orbital angular momentum _ with z- t-I.I

component m, then the wave function is at most a The above sum too may be delimited according t
finite sum over the (2_+ 1) function for the given to the symmetry properties of the states we intend

and m: to describe. These symmetry operatioi,s are well
t known for the diatomie molecule, 9, and exceptWt,(r_,r2) = Y. g?'*(r_,r2,01_)D_"k(O,,_,_) (2.14)
_--t for exchange, E_, they all involve only the Euler

angles. The transformation involved in the
Actually the above sum is more general than residual variables for E_, is r_=_r2 independent of

what is needed. Specifically one has an addi- whether the third variable is taken as 0_2or r_2.
tional operation which commutes with the Ham- In Table I we have summarized the transforma- :

iltonian and therefore gives rise to an addit:.onal tion properties of the Euler angles and the vector
constant of the motion. This is the oper_d-n of spherical harmonics under some of the major ::
space inversion (called parity, p, in the ator..._ symmetry operations of the two-electron homo- "
application_), usually labelled iE in mol_ alar nuclear diatomic molecule. _

applications _ corresponding to the operation r_ In the next section we shall utilize these proper-
--*- r] r_--_-rffi in all cases. It turns out that ties to construct wave functions with the desired
only the Euler angles are involved in this trans- symmetry properties. We emphasize that not
formation, and if we denote them by a three all these properties are independent. Tb,_s for "
comp_ner_t vector, (0, q,, _I,),then 7 example a full space inversion is the prodact of

0 0 the inversion about each of the axes-separately:

iE ¢ = ¢ (2.15) iE= ¢,a,_,,
\_/ \_r+_/

where the factors on the right can be written in
and any order. Therefore, the operation _r_ i_

redundant.

iED'_._(O,¢,'_) ffi(-1)_D_'._(0,¢,@) (2.16) The effect of additional symmetry operations

Therefore, the wave function (2.14), if it is to be such as ¢o on the angular momentum eigenfunc-
tions and variables can easily be worked out froman eigenfunction of iE, must be restricted to even

or odd k. Since the action of the Schr6dinger Table I by noting, in this case, that

equation is to couple all possible g_,_ functions in,fiE.a,
for the given $ and m, it can be seen that the in-
vocation of parity halves the number of functions, Not all symmetry operations commute with M,.
and thus among other things is of considerable Specifically ¢0 does not commute with M,. This
practical utility, may be easily ascertained by envisaging a vector
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TABLr 1.--Symmetry properties of the Euler angles and the angular momentum eioenfunctions.
,'.,-=w

Transformation Property 0 4, ¢z _ D_'_
!

iE space inversion (parity) # 4, @-f-r (- 1)JD_''

trl reflection through xfy plane 0 q,+T _I,+_r (-1)t+'D_ _
(inversion of z-coordinates

¢,, reflection through z-x plane f-# 2_r-_ _I, (-1)t-_D7 "'_
(inversion of y-coordina.tes)

¢,, reflection through z-y plane _r-0 f-4b _I, (-1)t+'-_D_'_
(inversion of x-coordinates)

_l_ exchange of particles* 7-0 q'q-_r 2T-_I' (-I)'D L_

°Thisoperationalsoaffectsthe residualeoordir_tes. _ text.

whose projection in the x-y plane is in the first mGnics which for m--0 are reaP. We define
quadrant. If first you reflect it through the y-z
plane (¢,), thus putting in the second quadrant D__'_)+-= (V_W_e,(2-V_)) -l

and then rotate around the z-axis by 90°, this (DT"A-D7 "-_) (3.1a)
vector will end up with a projection in the third

• I1 m,g tn,_K

quadrant. If first you rotate by 90°, putting it in D__'')----- (V_) (D_ -Dr ) (3.1b)

the second quadrant, and then reflect through the The important point abuut these alternate sets

y-z plane, you put it back into the first quadrant, of vector spherical harmovics is that they are
Thus eigenfunctions of exchange:

[¢,, M,] _ 0 (2.19a)
• E_D_"_'_)+= .+_(-- 1)iD__''',_- (3.2)
: This means that in general one can't construct

simultaneous eigenfunctions of M, and a_ while still retaining their eigenfunction character
i There is one exception to that situation, and with respect to parity, M_, and M, (with eigen-

that is 2; states, values (-1) _, /t_(_-I-1), /tm respectively).

For in that special case For m_0 we have already indicated in the
'_ previous section that the correct expansion of the
!_ M,D°._=O, (2.1"_) complete wave function is
_ so that o. ,,

:: re,, M,ID°"=0, (2.18) ,I%=_1,1 _(f_m")_-(r)D_m")+_ or

i [a,, M,]_.0= 0 (2.195) +fi'_'_)-(r)D_ "'')-) (3.3a)
The double prime on the summation indicates that

We shall see in the next section that because of
every second value of the summation index (in

this fact the structure of the _ wave function and this case x) is to be taken. This insures as stated,
the resulting _ radial equations is quite different that the wave function is an eigenfunction of iE.
from all other states. It is precisely this property which distinguishes

: the homonuclear from the heteronuclear mole-
: IlL WAVE FUNCTIONS AND THE POTENTIAL

cule. Thus there is established in the present": ENERGY
homonuclear case two classes of solutions for a

In order to facilitate the derivation of the radial given m, one for even and one for odd x. These
equations, it is convenient to construct an alter- are of course the gerade and ungerade states

: nate set of orthonorrnal vector spherical har- respectively.

i
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The radial functions f_.'_*(r) are written as expanded in terms of the Euler angles and 8,27:
functions of r which is short for the generalized

radial coordinates, either rl, 12, 01_or r:, r2, r_. 4_r "

The superscript indicates that the radial fu..ctions P_(0t) = (2k+ 1) J ta_ _ot2j,-,_
depend on the magnetic quantum number m: _ ev,o
HOW,_"erthe well-known degeneracy of the energy -a[-(012)D_ °'_-] (3.7a)

with respect to + m indicates that the radial func-
tions for ± m states must be simply related to each Applying _, we get from the above
other. The .-elation is undefined up to a ± sign, ,,

4_r

but a consistent choice is (see below) P_(O_)= (2X+ 1) i_ [a_*(O_)D_°'_)+
even

-m _)4-

' (rl,r,,Ol,)=(--1)Bfi'")*(r,,r2,0,_)
--a';,-(Ot2)D?'_'-] (3.7b)

The derivation of radial equations divides itself
into t_:o parts, the kinetic _nergy and the poten- where

tial energy. The kinetic energy is diagonal with (_ 1)_p_(_r/2f(X-u)!']½)' $o_
respect to t and m but by no means trivial with a_+(0_2)-'-, /[(-_-+--_iJ _,_-2
respect to how mixes the allowable x components.

However, this aspect of its behaviour has beer. 4-(1- $0,)cos (_0,,)} (3.8a)derived in detail in reference 7 and will not chang-.
in this application.

The potential energy in the atomic problem a_-(0,2)=(_,_n,_, ,of(X-_)']½ (_ _)
depends only on the generalized radial variables "_ sin ,_0_ f

rt, r_, r_ and therefore acts as additional, corn- (3.8b)
pletely diagonal terms in the atomic radial equa-
tions. On the other hand the molecular potential The associated Legendre polynomials are under-
energy is precisely what destroys the spherical stood to have the phase of Magnus and Ober-
symmetry of the Hamiltonian. Specifically for hettinger _°, and their argument is understood to
nuclei of charge z (energy in units of rydbergs) be inserted in the transcendental form of these
to complete molecular potential is functions as parenthesized above.

Since P_(0) has parity (-1) _ and from (3.5) X

2 2_ 2_ 2_ 2z }_2 is even, it follows the sums in (3.7) go over only_0t+_--- (3.4)
rt_ R4_ Ra2 .l_m R_2 r_2 even _ as indicated.

The point of these expansions is that when the
The last term is the interelectron repulsion and wave function (3.3) is substituted into the
since it commutes with the angular momentum as SchrSdinger equation
discussed above need not be considered further.

For the rest we can expand H_ = E_ (3.9)
• where

V,.ot= .-4_.Y. g_(_R,tn, rt)P_(O,) H-- T+ Vmo,+2/r_2 (.3.10)even

-4_ O_(½Ra_,r_)P_(O2) (3.5) and T is the kinetic energy, only V_0_ will couple
k even

where terms of different _. The decompositions, Eqs.
x_ (3.7), then tell us that the coupling from a state

]_y-_ x<y (radial function) with quantum members _, _, mgx(x, Y)
--/y_ (3.6) to one with quantum numbers tt, xt, m (the molec-
( y < x ular interaction is still d.:agonal in m) will be gov-

erned by integrals over three vector spherical
Ras is the internuclear separation. The Legen- harmonics. Two of these angular functions come
dre polynomials Px(0) (note what we mean is from the coupled states and one from the interac-
eg. P_(0)_cos0 not P_(0)_0) can further be tion; the integral in question is therefore a linear
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combination of integrals of the form

s 2r 2_

fly ,,,. o, ,,f. ,_^_._, ,(2/,-I-I)(2X-F1)(D,,' ) Dx' 05: sm ,aoawuw-"-_ _ (¢,X-mOllf-m)(l,x-.a_lG-,_f) (3.11)
0 0 o

. The formula for this integral given on the rhs energy with respect to + m eigenfunetions. If
of the above equation is well known _1in terms of the eigenfunetiort for +m is given by (3.3a) and
the Clebsch-Gordan (C-G) coefficients. The se- that for -m is given by

lections for the vanishing of this integral can

therefore be deduced from those of the C-G __m= _ _(ft(--),)+bt(-m..)+
i coefficients. _-f-I x

Consider first • states (m= 9). In this c&se -{-f_(-'")-Dt(-_,')-), (3.3b)

i the first C-G coefficient becomes (l X 00/l'0). the obvious question is what is the relation of the
I This coefficient vanishes unless lWX4-l'=even ftc_,')_tof_ (-','_. The answer to this question
f (integer). But X is an even integer, Eq. (3.5, still resides in the same C-G coefficient, in this

therefore: l-}-l'= even case in the symmetry propertyU:

t This says that for • states only radial functions (D_mOll'm) = (-1) _+x+t(_--m01t'-m) (3.13)
of even l will be coupled together and only odd l
states will be coupled but there will be no inter- Since X-- ._ven, we see the si_ of the coupling of
mixing. Thus for 2; states the expansion of the an / to at. l p state is reversed for _I,_, relative to

what it is for _I,, if/+/'=odd (i.e., l and/' havewave function, Eq. (3.3a), separates into two
classes defined by the evenness or oddness of l: opposite parity). If the radial functions change

sign in the same way, then the equations (and
WW

_0 = y,y,(f_o,,)+(r)D(tO.,)+ hence the ¢igenvalues) will in fact not change.
t, i.e., we must have

_Ff t(o.,)-fr_r_(O.=)-_
jo_ ) (3.12) f{-',')_-- (--1) _f_(_,')_ (3.14a)

The molecular quantum numbers +_ are deter-
mined by the parity of I which is the eigenvalue This relation could be altered by a minus sign;
of i a,u. This then constitutes the exception to the relation

the noncoramutivity of a,_ ,. oa M, which was f_(-'.')_:=(-1)t+'fe (',_)_" (3.14b)
noted in Eq. (2.19).

The quantum lables of the • states are corn- is equally acceptable and has the advantage that
piled in the entries of the following simple array: the first radial function that appears in the expan-

__ sion of W', will be the one which doesn't change

l even odd signwhen usedin_I,__.
In all-_aseswe haveby virtueoftheverysim-

x , pie exchange property of De(','_, Eq. (3.2), that

eve gerade, + gerade, - the complete spatial wave function _I,, will be
symmetric (upper sign) or antisymmetrie (lower

odd [ ungerade, + ungerade, - sign) if the radial functions have the exchange
property

For m_O, the relevant C-G coefficient is not

necessarilyzerowhen _+X-bl' ---odd. Thus the ( (On_decoupling according to even or odd l (+sym- _"_)+\r_, r_,_r_z_]

metD') does not occur, corresponding to the non-

eommutivity of ¢, with M,, Eq. (2.19b). Here, _((0::})however, there exists a well known degeneracy in ffi 5: (- 1)_f__'')+ r_, r_, (3.15a) i
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and IV. RADIAL EQUATIONS

f(m.,,-[ {0::}) The foregoing discussion together with the_r2, r_, (3.15b) knowledge of the kinetic energy operator 7 essen-

1)t+_rt(,.,)_/ (O,_ tially allows us to write down the "radial" equa-
.--.+ (-_r,, r,,_rnf } tions for arbitrary m. Specifically substituting

These properties essentially halve the inde- (3.12) or (3.3a)into the SchrSdinger equation,

pendent variable space over which the equations multiplying on the left by Deem.')* and integrat-
need to be integrated 7. ing over the Euler angles, one obtains

t

- o-cot0.__ .(. ,+,)+ cot 0,_ (1+3_0.,_,) A',_,A;_,_(,.,__)+:r_l
q-(x'lt'l)(_']-a)s-_b::lJt"+2"Ii ' (r)ff4 sin On (1+$o.,-2(v_-1)) #,, :t ' :J

oo0,, ,2 sin (_0,_) cot 0,_ 2 sin 0n] a0,_

2 t%_(__--.,a;)_,.,.>_.(_+0(_+2)o .,..+_-..
2 sin 0,_ :' 1 s_ _ m,,+_,le ' _,r)

A t A t "11 (1 -- $o,,-_) ,-_ ,-lt(,,,,,-_)- :._ I
4sin0n (l+_o,.-dv_ 1)) _-- vt w/-- _¢x J

2m 2 " (__R j) _ ,, (m.,)v .-l--_-4,_ _ _ q, AS, r (I 2_,$,,_)a_ ^(O,_)l,,(lx-l-, 3'x, 7/)f_ : (r)=O (4 la)
_. j-I _h(even)

[ ''2m(_. 2Nl:(,,,.)_, , /I1_ 1\F¢e(e+1)-._-_a coto,,..,za%,.,.,_,_,

cotOn,. , -)(x+l ,,4_Be . cotOn.. . , A'.-,A;-,,(.,..-,)-:r,I
_'-,,,.+,.. _ )( - ,) , x-F2f_'"+')-(r)4-_[,-Oo,,-,) _ :' , 'J

,., + 1 1 cos On 1 _.(1--2A.).(..)+..-- --x cot On f_'")+(r) -_--r- -z-- -.It " . t,r)
"'" : 2 sin (_) 2 sin Ot ao_2 zsman "

(1-_,.+_)(w+l)(x+2)Bt" .,_t""+_)+(r)44 1 (1+3_0,.__) A,-_dl,-_(m.,-_)+r,._ Ism ttt_ sin Ot_ (1+$o,.-_(V'2--1)) fie. - .'t v/j

2m '' (1)+-_-4z _ _ _ _ "_Ras, r (1-2&¢S.__)a_'_(On)I,_(t_ -, ,_, 7_)f_'''')'/ (r)ffi0 (4.1b)
_I .,,'-1 h._(even)

The index _, in the above formulae represen,ts the and in particular
triple indices t, x, _. For example , , ,, ,

Z = Z _; • (4.3b)
"v/=it, xt, _: (4.2) '_x('_'*) _('_'*) . (*'_") "_

is a symbol which can be + or -, _o that a sumA summation with respect to this index means:
over _ consists of only these two i_rm_.

2_m _ _ _ (4.3a) Aside from these abbreviations, the radial equa-
l: 9 "_ '_ tions have been written above in a fairly explicit
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form (with a corresponding sacrifice of elegance), that the functions are in symmetric form. Hence
For an arbitrary t the coupling is reasonably corn- the soiutious may be confined to the region, say,
plicated although as we shall see in the next sec- r_> r_ with the boundary condition
tion for g small the equations simplify greatly.

The nature of the coupling is nevertheless con- [ af_m'"" 1 (4.5a)
tained in the equations themselves via the selec- L_ Jr,-', _0
tion rules for the various coefficients. Regarding and
the effect of the kinetic energy coupling, a verbal

f_-(_.,o,,, ---0 (4.5b)description of the nature of that coupling is given tjc _,.,.,.,
in reference 7.

The equaJfions .ha the foraa4g_v_4aere ,ar,c,,ap .... wJaere..aHtn,.La._mal_ dafivative._a_k._-and.
propriate to the radial coordinates r_, r_, On with _ are the t-'o choices of -F and -, being so

selected according to (3.15) to give either the
Lo,, 1 .0_.1+1 Or

' = r_ Or,_ r_ _r_ zr2 space symmetric (singlet) or the space antisym.
metric (triplet) solution of the SehrSdinger

i +{1+1_I. /),(" a-'_l_) equation._ \r? r2_]sin 0z_ O0_ sm On (4.4) The coupling due to the potential energy is
given in the last term of each of the radial equa-

: Also the fact that one has two functions (and tions. It can be seen that it alone is m dependent,
+ hence two equations) for a given g and x indicates and coupling coefficients Im are:

7r 2_ 2?r

,.+ I.,.(v,"t_,,v_)= (2x+1)+
e 0 0 0

- sin OdOd¢&k (4.6a)

This quadrature, which is a linear combination of integrals of the form (3.11), yields:

.i+ [(t+ _+o,(v_- 1))(1+_o.(V_-1))(1+ 8o..+o./V_-1))1-'
, z.,(_,,_,_,_,:)= {d*/+_}{,,)

]2(2l+1) ,1-- _ + t l_t+t'w/X toO'
,%1__ -t- _,_- _ _ - +t,,,,)I(tX-,,uJt,-,,,)++,(&-,,ult_.,)

+,_(tx-,,-ult_-,,2+.(tx,,ulet-,,_)] (4.6b)

Here _he gs are to be thought as the numbers 5:1, mrvive. The inclusion of all X terms for a given
and L, then constitutes a given order of approxima-

+_ [+,} = {(1+_,)'h-i(1-_,) '} (4.7) tion in the context of the partial wave theory.
_ It is now our assertion that the solutions of sue-
: These coefficients are subject to many restric- cessive approximation converges usefully. By

tions if they are not to vanish. Also only one of this we mean two things; first that for a given L
the C-G coefficients in the final square bracket the f/r) _._" from l=l, to _=L get smaller in
will not vanish when any of these indices are some sense. Secondly in going from one L to the
non-zero. (When x---_=0 all four terms con- next theft(r)_',_)' for a given set of indices (t, x, _)
tribute.) does not change much•

In view of the complicated nature of these cqua-
Y. TRUNCATION AND THE _+ STATE OF H=

tions this would be a very d:aicult thing to prove
_ The coupling in _t and _,contained in the poten- rigorously. The heuristic argument, however,

tial terms in principle includes a doubly infinite follows that for the one-electron diatomic mole-

sum. If one truncates the sum in Ct at It-L , culek Namely, in the centrifugal terms, which
then only a finite number of terms in the ), sum are those multiplied by (r_-Zq-r_-z) in the above
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equations, there is a repulsive term proportional known from at least une atomic example that
to _(_-b 1) which _ends to diminish the amplitude there can be resonance regions in which an add,-
of each succeeding ]t(r)component in the region tional l component can in fact dominate its
of interaction, predeeessol_, a_

Since, however, there are considerably more We shal _ therefore examine one case in which

terms than this l(t+l) term, the cogency of this there exist nur,lerical results. Consider the Zp+
argument is considerably more obscure than its states of Hs. In zeroth order (L = C) these states

one-electron counterpart _ and in any event it is which include the ground state, are governed by

the equation (z =,1) :

[1 d2r+l d2 1 # . d 2m 1

4 ))?+4 Ran, r_ (r_, r2, On)=0 (5.1)

This is a three-dimensional partial differential the boundary conditions:

equation for a single function (f-f.(°.°'+). The [O_nf ]expression in square brackets is manifestly in- (rl, r2, 0t_) =0 singlet (5.2a)
PI_T,

variant with respect to exchange, r_::_r_, and the

singlet and triplet solutions are distinguished by Lf(rl, r_, 0nJ,., --0 triplet (_.2b)

Below we shall outline a systematic approximation procedure _or solving this equatiea. For uomplete-
ness, however, we shall give this equation with r_, r_, and rn as the independent variables:

[ '--' ' , (__ rltrn--r2 } rs-t n--r1 _-_i- E-2[rn
1 _2 1 O__r._F',_ 8_ 82 __r 2 82 2m

at:r. r,r, ar,rl, r,,',

"_t-2g0 _RA.,rl -_ Ra_,ri (r_, r_, 0n)ffi0 (5.3)

This form of the zeroth order equation is ap- equation, which are essentially those that already
propriate for solution in terms of l[ylleraas-type have been derived in the case of the scattering of
expansions. In reference 7 other ways of writing electrons from atomic hydrogen t_. One can then |
these equations are given, involving in particular truncate the sum at n ffiN and expect convergence I( _et_ in N in a completely analogously way as one
asymmetric functions F\r_, r_,(r_f]" expects convergence in L in the partial wave

A methodical way of solving the 8n equation is theory as a whole.
to make a relative partial wave expansion of f: Alternatively one can expand the total wave

function in the form (considering here only the

f(ra, r_, 0_,)= _ 1-_.(rtr_)P,(On) (5.4) singlet ease):
• -0 rt r_

ffi )
The Legendre polynomials P,(_n) are selected "_ '_" "
because they are the eigenfunctions of the #n
derivative term in (5.1). Also the interelectron Y_(flt)Y,_(Pn)+(l_:t2)] (5.5)
repulsion 1/rn has a well known expansion in
terms of P,(#n), so that one can easily derive an If one restrict_ this sum to _z- _ and dl values

infinite set of two dimensional partial differential of _ for each _a, then this expansion is equivalent
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to (5.4). A detailed investigation of the ground excited state solutions and cf their mutual

Z+ state of H_ using (5.5) has been carried out orthogonality'.• by Hagstrum and ShuN". They have in fact REFERENCES
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P approximate in those cases is a hybrid of approxi- 2. M. COHENand C. A. COULSON,Proc. Cambridge Phil
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F6rhandlinger _6, 135 (1956).
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